Ocean surface air temperature derived from multiple data sets and artificial neural networks
نویسنده
چکیده
This paper presents a new method to derive monthly averaged surface air temperature, Ta, from multiple data sets. Sea Surface Temperature (SST) from the National Centers for Environmental Prediction (NCEP) and total precipitable water (W)from the SSM/I sensor are used as inputs to Artificial Neural Networks (ANN). Surface air temperature (Ta) measurements from the Surface Marine Data (SMD) are used to develop and evaluate the methodology. When globally evaluated with SMD data, the bias of the new method is small (0.050 ø C + 0.26 ø C), and the accuracy expressed as root-mean square (rms) differences has a small global mean (0.73 ø C + 0.37 ø C). These biases and rms differences are smaller than those obtained using NCEP reanalyses and TIROS Operational Vertical Sounder (TOVS) data products. When evaluated with the TOGA-TAO array measurements over the tropical Pacific, the ANN mean bias and rms differences have similarly small values, 0.37 ø C and 0.61 ø C, respectively.
منابع مشابه
Forecasting and Sensitivity Analysis of Monthly Evaporation from Siah Bisheh Dam Reservoir using Artificial neural Networks combined with Genetic Algorithm
Evaporation process, the main component of the water cycle in nature, is essential in agricultural studies, hydrology and meteorology, the operation of reservoirs, irrigation and drainage systems, irrigation scheduling and management of water resources. Various methods have been presented for estimating evaporation from free surface including water budget method, evaporation from pan and experi...
متن کاملDaily Pan Evaporation Estimation Using Artificial Neural Network-based Models
Accurate estimation of evaporation is important for design, planning and operation of water systems. In arid zones where water resources are scarce, the estimation of this loss becomes more interesting in the planning and management of irrigation practices. This paper investigates the ability of artificial neural networks (ANNs) technique to improve the accuracy of daily evaporation estimation....
متن کاملAccuracy comparison of Elamn and Jordan artificial neural networks for air particular matter concentration (PM 10) prediction using MODIS satellite images, a case study of Ahvaz.
Due to the complexity of air pollution action, artificial intelligence models specifically, neural networks are utilized to simulate air pollution. So far, numerous artificial neural network models have been used to estimate the concentration of atmospheric PMs. These models have had different accuracies that scholars are constantly exceed their efficiency using numerous parameters. The current...
متن کاملApplication of Artificial Neural Networks (ANN) and Image Processing for Prediction of the Geometrical Properties of Roasted Pistachio Nuts and Kernels
Roasting is the most common way for pistachio nuts processing, and the purpose of that was to increase the products total acceptability. Purpose of this study was to investigate the effect of temperature (90, 120 and 150°C), time (20, 35 and 50 min), and roasting air velocity (0.5, 1.5 and 2.5 m/s) on geometrical attributes of pistachio nuts and kernels including principle dimensions, shape fac...
متن کاملArtificial neural network forecast application for fine particulate matter concentration using meteorological data
Most parts of the urban areas are faced with the problem of floating fine particulate matter. Therefore, it is crucial to estimate the amounts of fine particulate matter concentrations through the urban atmosphere. In this research, an artificial neural network technique was utilized to model the PM2.5 dispersion in Tehran City. Factors which are influencing the predicted value consi...
متن کامل